

U. SHAH UNIVERSITY WADHWAN CITY FACULTY OF SCIENCES

B.Sc.(PHYSIC

SEM –V

Syllabi (CBCS) of Physics WEF June 2016

COURSE: B.Sc.

SEMESTER: V

SUBJECT NAME: Mathematical Physics and Classical Mechanics SUBJECT CODE: 4SC05MPC1

Teaching & Evaluation Scheme:-

Teaching hours/week Credit					Evaluation Scheme/semester								
						The	cal						
Th	Tu	Pr	Total		Sessional University Exam Exam		Internal		University	Total Marks			
					Marks	Hrs	Marks	Hrs	Pr	τw			
4	0	0	4	4	30	1.5	70	3				100	

Objectives:-The general purpose of this course is

• To expose the student knowledge of Mathematical Physics and Classical Mechanics.

Prerequisites:-Fundamental knowledge of Mathematical Physics and Classical Mechanics.

Sr.	Course Contents	Hours
No.		
1	 Frobenius Method and Special Functions Singular Points of Second Order Linear Differential Equations and their importance, Frobenius method and its applications to differential equations, Legendre, Bessel, Hermite and Laguerre Differential Equations, Properties of Legendre Polynomials: Rodrigues Formula, Orthogonality, Simple recurrence relations. Some Special Integrals Beta and Gamma Functions and Relation between them, Expression of Integrals in terms of Gamma Functions, Error Function (ProbabilityIntegral). 	20
2	Fourier Series Periodic functions, Orthogonality of sine and cosine functions, DirichletConditions (Statement only), Expansion of periodic functions in a series of sine andcosine functions and determination of Fourier coefficients, Complex representation of Fourier series, Expansion of functions with arbitrary period, Expansion of non-periodicfunctions over an interval, Even and odd functions and their Fourier expansions, Application, Summing of Infinite Series.	10
3	Lagrangian Formulation Introduction, Constraints, holonomic and non-holonomic constraints, scleronomous and rheonomous constraints, generalized coordinates, D'Alembert's principle, Lagrange's equations, a general expression for kinetic energy, Symmetries and the laws of conservation, Cyclic or ignorable coordinates (including illustrations), Velocity dependent potential of electromagnetic field, Rayleigh's dissipation function.	15

15

4 Variational Principle

Lagrange's and Hamilton's Equations, Configuration space, Hamilton's principle, Equivalence of Lagrange's and Newton's equations, Advantages of the Lagrangian formulation-electro-mechanical analogies, Lagrange's undetermined multipliers, Applications of the Lagrangian method of undetermined multiplies, Hamilton's equations of motion, Some applications of the Hamiltonian formulation, Phase space, Problems.

Learning Outcomes:-After successful completion of this course, students have:

• Knowledge of Mathematical Physics and Classical Mechanics.

Books Recommended:-

- 1. 'Mathematical Physics', **B. D. Gupta**, 2nd Revised Ed., *Vikas Publishing House Pvt. Ltd*.
- 2. 'Mathematical Physics', B. S. Rajput, Pragati Prakashan.
- 3. 'Mathematical Methods for Physics', George B. Arfken and Hans J. Weber, 4th Ed., *Academic Press, Inc.*
- 4. 'Mathematical Methods in the Physical Sciences', Mary L. Boas, Wiley India Pvt. Ltd.
- 5. 'Fourier Analysis', M.R. Spiegel, Tata McGraw Hill.
- 6. 'Mathematics for Physicists', Susan M. Lea, Thomson Brooks/Cole.
- 7. 'Essential Mathematical Methods', K.F. Riley and M.P. Hobson, Cambridge Univ. Press.
- 8. 'Mathematical Methods for Scientists and Engineers', D.A. McQuarrie, Viva Books.
- 9. 'Introduction to Classical Mechanics', **R. G. Takwale and P. S. Puranik**, *Tata McGraw Hill*.
- 10. 'Classical Mechanics', H. Goldstein, Addison Wesley.
- 11. 'Classical Mechanics', Gupta, Kumar and Sharma, Pragati Prakashan.

E-Resources:-

- 1. <u>http://pms.iitk.ernet.in/wiki/index.php/Physics</u>
- 2. www.wikipedia encyclopaedia
- 3. www.physic.about.com
- 4. www.physic.org
- 5. <u>www.Physicsclassroom.com</u>
- 6. www.howstuffwork.com
- 7. www.colorado.edu/physics/2000
- 8. www.ndrs.org. physic.com
- 9. www.physlinc.com
- 10. www.fearophysic.com
- 11. www.hyperphysics.com

- 1. Hyper Physics.
- 2. Encyclopaedia of Science (D.K. Multimedia).
- 3. Physics Encyclopaedia.
- 4. Virtual Physics Junior (Original PC CD Rom).
- 5. Encyclopaedia Britannica-2008.

COURSE: B.Sc.

SUBJECT NAME: Solid State Physics

SEMESTER: V

SUBJECT CODE: 4SC05SSP1

Teaching & Evaluation Scheme:-

Теа	ching	hours	s/week	Credit	Evaluation Scheme/semester								
						Theory Practical							
Th	Tu	Pr	Total		Sessional Exam		University Exam		Inte	ernal University		Total Marks	
					Marks	Hrs	Marks	Hrs	Pr	TW			
4	0	0	4	4	30	1.5	70	3				100	

Objectives:-The general purpose of this course is

• To expose the student knowledge of Solid State Physics.

Prerequisites:-Fundamental knowledge of Solid State Physics.

Course outline:-

Sr.	Course Contents	Hours
No.		
1	Crystal Structure Solids: Amorphous and Crystalline Materials, Lattice TranslationVectors, Lattice with a Basis-Central and Non-Central Elements, Unit Cell, MillerIndices, Reciprocal Lattice, Types of Lattices, Brillouin Zones. Elementary Lattice Dynamics Lattice Vibrations and Phonons: Linear Monoatomicand Diatomic Chains, Acoustical and Optical Phonons, Qualitative Description of thePhonon Spectrum in Solids, Dulong and Petit's Law, Einstein and Debye theories ofspecific heat of solids, T ³ law.	18
2	Elementary Band Theory Kronig Penny model. Band Gaps. Conductors, Semiconductors and insulators, p and n type Semiconductors, Conductivity of Semiconductors, mobility, Hall Effect, Hall coefficient.	12
3	Dielectric Properties of Materials Polarization, Local Electric Field at an Atom, Depolarization Field, Electric Susceptibility, Polarizability, Clausius-Mosotti Equation, Classical Theory of Electric Polarizability, Normal and Anomalous Dispersion, Cauchyand Sellmeir relations, Langevin-Debye equation, Complex Dielectric Constant, OpticalPhenomena, Application: Plasma Oscillations, Plasma Frequency, Plasmons.	15
4	Superconductivity Flux exclusion-The Meissner Effect, Thermal Properties, The Energy Gap, Isotope Effect, Mechanical Effect, The Penetration Depth, Types of Superconductors, Experimental Aspects, Influence of external agents on Superconductivity, Critical field of Small Specimens, Thermodynamic of Superconducting transition, Alloys & Compounds, London's theory, Josephson effects, BCS theory, Applications of Superconductivity, SQUID.	15

Learning Outcomes:-After successful completion of this course, students have:

• Knowledge of Solid State Physics.

Books Recommended:-

- 1. 'Solid State Physics', S. O. Pillai, New Age International Pub.
- 2. 'Solid State Physics', M. A. Wahab, Narosa Publishing House.
- 3. 'Elements of Solid State Physics', J. P. Srivastava, PrenticeHall of India.
- 4. 'Introduction to Solid State Physics', **C. Kittel**, 8th Ed., *Wiley Eastern Ltd*.
- 5. 'Solid State Physics' A. J. Dekker, MacMillan India Ltd.
- 6. 'Introduction to Solids', Leonid V. Azaroff, Tata McGraw Hill.
- 7. 'Solid State Physics', Neil W. Ashcroft and N. David Mermin, Cengage Learning.
- 8. 'Solid State Physics', Rita John, McGraw Hill.
- 9. 'Solid-state Physics', H. Ibach and H. Luth, Springer.
- 10. 'Elementary Solid State Physics', M. Ali Omar, Pearson India.

E-Resources:-

- 1. <u>http://pms.iitk.ernet.in/wiki/index.php/Physics</u>
- 2. www.wikipedia encyclopaedia
- 3. www.physic.about.com
- 4. <u>www.physic.org</u>
- 5. <u>www.Physicsclassroom.com</u>
- 6. <u>www.howstuffwork.com</u>
- 7. www.colorado.edu/physics/2000
- 8. www.ndrs.org. physic.com
- 9. www.physlinc.com
- 10. www.fearophysic.com
- 11. www.hyperphysics.com

- 1. Hyper Physics.
- 2. Encyclopaedia of Science (D.K. Multimedia).
- 3. Physics Encyclopaedia.
- 4. Virtual Physics Junior (Original PC CD Rom).
- 5. Encyclopaedia Britannica-2008.

COURSE: B.Sc.

SEMESTER: V

SUBJECT NAME: Atomic and MolecularSpectroscopy

SUBJECT CODE: 4SC05AMS1

Teaching & Evaluation Scheme:-

Теа	ching	hours	/week	Credit	Evaluation Scheme/semester							
					Theory Practical							
Th	Tu	Pr	Total		Sessional University Exam Exam		Inte	rnal	University	Total Marks		
					Marks	Hrs	Marks	Hrs	Pr	тw		
4	0	0	4	4	30	1.5	70	3				100

Objectives:-The general purpose of this course is

- To expose the student knowledge of Atomic spectroscopy.
- To expose the student knowledge of Molecular Spectroscopy.

Prerequisites:-Fundamental knowledge of Atomic and Molecular Spectroscopy.

Sr.	Course Contents	Hours
No.		
1	Types of Molecular Spectra and Molecular Energy States	08
	Separation of electronic and nuclear motion, The Born Oppenheimer	
	approximation, types of molecular spectra.	
2	Pure Rotational Spectra	20
	Salient features of rotational spectra, molecular requirement for rotation	
	spectra, experimental arrangement, molecule as a rigid rotator, explanation	
	of rotational spectra (without the process of solving Schrodinger equation to	
	get energy formula), the non-rigid rotator, Isotope effect on rotational	
	spectrum, tunable laser and pulse laser-introduction	
	Vibrational-Rotational Spectra	
	Salient features of vibrational-rotational spectra, molecule as a harmonic	
	oscillator, molecule as anharmonic oscillator, vibrational frequency and	
	force constant for anharmonic oscillator, fine structure of Infrared bands:	
	molecule as vibrating rotator, diatomic molecule as symmetric top, thermal	
	distribution of vibrational and rotational levels.	
3	Atomic Spectroscopy	15
	The spinning electron, space quantization, quantum numbers and their	
	physical interpretations, Zeeman effect and experimental study of Zeeman	
	effect, classical interpretation of normal Zeeman effect, vector atom model	
	and normal Zeeman effect, vector atom model and anomalous Zeeman	
	effect, Paschen-Back effect, Stark effect.	

4	Raman Spectra	17								
	Nature of the Raman spectra, experimental arrangement for Raman spectra,									
	classical theory of Raman effect, quantum theory of Raman effect, Raman									
	spectra and molecular structure, Infrared spectra versus Raman spectra,									
	Laser as intense source.									
	Classification of Molecular Electronic States									
	Molecular electronic states, symmetry properties of electronic									
	Eigenfunctions (symmetry classification of electronic states)									
	Fluorescence and Phosphorescence									
	Luminescence, mechanism of fluorescent emission, mechanism of									
	phosphorescent emission, fluorescence spectrum compared with Raman									
	spectrum.									

Learning Outcomes:-After successful completion of this course, students have:

• Knowledge of Atomic and Molecular Spectroscopy.

Books Recommended:-

- 1. 'Elements of Spectroscopy', S. L. Gupta, V. Kumar and R. C. Sharma, Pragati Prakashan.
- 2. 'Atomic Physics', J. B. Rajam, S. Chand and Company Ltd.
- 3. 'Optics and Spectroscopy', R.Murugeshan and K. Sivaprashatha, S. Chand and Company Ltd.

E-Resources:-

- 1. <u>http://pms.iitk.ernet.in/wiki/index.php/Physics</u>
- 2. www.wikipedia encyclopaedia
- 3. <u>www.physic.about.com</u>
- 4. <u>www.physic.org</u>
- 5. <u>www.Physicsclassroom.com</u>
- 6. www.howstuffwork.com
- 7. www.colorado.edu/physics/2000
- 8. <u>www.ndrs.org. physic.com</u>
- 9. www.physlinc.com
- 10. www.fearophysic.com
- 11. www.hyperphysics.com

- 1. Hyper Physics.
- 2. Encyclopaedia of Science (D.K. Multimedia).
- 3. Physics Encyclopaedia.
- 4. Virtual Physics Junior (Original PC CD Rom).
- 5. Encyclopaedia Britannica-2008.

COURSE: B.Sc.

SEMESTER: V

SUBJECT NAME: Nuclear Physics and Electromagnetism

SUBJECT CODE: 4SC05NPE1

Teaching & Evaluation Scheme:-

Tea	ching	hours	s/week	Credit	Evaluation Scheme/semester							
					Theory Practical							
Th	Tu	Pr	Total		Sessional University Exam Exam		Inte	ernal	University	Total Marks		
					Marks	Hrs	Marks	Hrs	Pr	TW		
4	0	0	4	4	30	1.5	70	3				100

Objectives:-The general purpose of this course is

• To expose the student knowledge of Nuclear Physics and Electromagnetism.

Prerequisites:-Fundamental knowledge of Nuclear Physics and Electromagnetism.

Sr.	Course Contents	Hours
No.		
1	General Properties of Nuclei	15
	Constituents of nucleus and their Intrinsic properties, quantitative facts about	
	size, mass, charge density (matter energy), binding energy, average binding	
	energy and its variation with mass number, main features of binding energy	
	versus mass number curve, N/A plot, angular momentum, parity, magnetic	
	moment, electric moments, nuclear excites states.	
2	Nuclear Models	15
	Liquid drop model approach, semi empirical mass formula and significance of	
	various terms, condition of nuclear stability. Two nucleon separation	
	energies, Fermi gas model (degenerate fermion gas, nuclear symmetry	
	potential in Fermigas), evidence for nuclear shell structure, nuclear magic	
	numbers, basic assumption of shell model, concept of mean field, residual	
	interaction, concept of nuclear force.	
3	Electromagnetic induction	15
	Hysteresis, Maxwell's equations, Decay of free charge, Potentials of	
	electromagnetic fields, More about the Lorentz gauge condition, Field energy	
	and Field momentum.	
	Electromagnetic waves	
	Plane waves in non-conducting media, Polarizations, Energy flux in a plane	
	wave, Radiation pressure and Momentum, Plane waves in conducting	
	medium, Skin effect.	

15

5 Electromagnetic Radiation

Retarded Potential, Radiation from an oscillating dipole, Linear Antenna, Lienaed-Wiechert Potentials, Potentials for a charge in uniform motion-Lorentz formula, Fields of an accelerated charge, Radiation from an acceleration charged particle at low velocity, Radiation when the velocity and acceleration of the particles are collinear, Radiation from a charged particle moving in a circular orbit, Elective quadrupole radiation.

Learning Outcomes:-After successful completion of this course, students have:

• Knowledge of Nuclear Physics and Electromagnetism.

Books Recommended:-

- 1. 'Electromagnetics', **B. B. Laud**, 2ndEdition, Wiley Eastern Ltd.
- 2. 'Introduction to Electrodynamics', David J. Griffiths, Prentice-Hall of India.
- 3. 'Nuclear Physics An Introduction', S.B. Patel, New Age International.
- 4. 'Introduction to Nuclear Physics', H.Enge, Addison Wesley Pub. Com.
- 5. 'Nuclear Physics', D. C. Tayal, Himalaya Publisher.
- 6. 'Modern Physics', Kenneth Krane, John Wiley and Sons.
- 7. 'Nuclear Physics', Irvin Kaplan, 2nd Edition, Addison Wesley Pub. Com.
- 8. 'Nuclear Physics', S.N.Ghoshal, S. Chand & Company Ltd.
- 9. 'Introductory nuclear Physics', Kenneth S. Krane, Wiley India Pvt. Ltd.
- 10. 'Concepts of nuclear physics', Bernard L. Cohen, Tata McGraw Hill.
- 11. 'Basic Ideas and Concepts in Nuclear Physics An Introductory Approach'**K. Heyde**, *IOPPublishing*.
- 12. 'Theoretical Nuclear Physics', J.M. Blatt and V.F.Weisskopf, Dover Pub.Inc.

E-Resources:-

- 1. <u>http://pms.iitk.ernet.in/wiki/index.php/Physics</u>
- 2. <u>www.wikipedia encyclopaedia</u>
- 3. www.physic.about.com
- 4. www.physic.org
- 5. <u>www.Physicsclassroom.com</u>
- 6. www.howstuffwork.com
- 7. www.colorado.edu/physics/2000
- 8. <u>www.ndrs.org. physic.com</u>
- 9. www.physlinc.com
- 10. <u>www.fearophysic.com</u>
- 11. www.hyperphysics.com

- 1. Hyper Physics.
- 2. Encyclopaedia of Science (D.K. Multimedia).
- 3. Physics Encyclopaedia.
- 4. Virtual Physics Junior (Original PC CD Rom).
- 5. Encyclopaedia Britannica-2008.

FACULTY OF SCIENCES

DEPARTMENT OF PHYSICS

COURSE: B.Sc.

SEMESTER: V

SUBJECT NAME: Nanoscience and Nanotechnology

SUBJECT CODE: 4SC05NSN1

Teaching & Evaluation Scheme:-

Теа	ching	hours	s/week	Credit	lit Evaluation Scheme/semester							
					Theory Practical							
Th	Tu	Pr	Total		Sessional Exam			University Exam		rnal	University	Total Marks
					Marks	Hrs	Marks	Hrs	Pr	τw		
4	0	0	4	4	30	1.5	70	3				100

Objectives:-The general purpose of this course is

- To expose the student knowledge of Nanoscience and Nanotechnology.
- To expose the student knowledge of applications of Nanoscience and Nanotechnology.

Prerequisites:-Fundamental knowledge of Nanoscience and Nanotechnology.

Sr.	Course Contents	Hours
No.		
1	Introduction toNanoscience	15
	Introduction to Nanoscience, Some Nano Challenges, The fundamental	
	Science Behind Nanotechnology, Tools for Measuring Nanostructures, Tools	
	to Make Nanostructures, Point and Places of Interest (Sensors, Nanoscale	
	Biostructures, Energy capture, Transformation and storage, Optics, Magnets,	
	Fabrication, Electronics), Smart Materials (Self-Healing Structures,	
	Recognition, Separation, Catalysts).	
2	Introduction to Nanomaterials	15
	Introduction to nano-sized materials and structures, Definitions of	
	nanomaterials, Brief history of Nanomaterials and challenges in	
	Nanotechnology, Properties of Nanomaterials: Effect of reduction of	
	dimensions, quantum size effects, Mechanical, Thermal, Optical and	
	Magnetic properties of nanomaterials.	
3	Methods of Synthesis of Nanomaterials	15
	Bottom-up and Top-down approaches-Mechanical method: High Energy Ball	
	Milling, Methods based on evaporation (Physical Vapour Deposition),	
	Chemical Vapour Deposition, Chemical Methods: Colloidal Method and Sol-	
	gel Method.	
	Special Nanomaterials	
	Carbon Nanotubes (CNT), Types-Single walled, multiwalled CNT, Structures	
	and properties of CNTs, Synthesis of carbon nanotubes.	

4	Analytical (Characterization) Technique	15
	Microscopes: Scanning Electron Microscopy (SEM), Transmission Electron	
	Microscopy (TEM), X-ray diffraction.	
	Applications	
	Electronics, Biotechnology and Medical, Automobiles, Space, Defence,	
	Sports, Cosmetics, Cloth Industry.	
Lear	ning Outcomes:-After successful completion of this course, students have	
•	Knowledge of Nanoscience and Nanotechnology.	
•	Knowledge aboutthe applications of Nanoscience and Nanotechnology.	
Bool	s Recommended:-	
	1. 'Nanotechnology A Gentle Introduction to the Next Big Idea', Mark Ratn	er and
	Daniel Ratner, Pearson Education.	
	2. 'Introduction to Nanotechnology', C.P. Poole Jr. and F.J. Ownes, Wiley Public	cation.
	3. 'Nanoscience and Technology', Eds. R.W.Kelsall, I.W. Hemley & M. Geog	
	John Wiley and Sons.)
	4. 'Introduction to Nanoscience and Nanotechnology', K.K. Chattopadhyay an	nd A.N.
	Banerjee, PHI Learning Pvt. Ltd.	
	5. 'Origin and Development of Nanotechnology', P.K.Sharma, Vista Internation	nalPub.
	House.	
E-Re	sources:-	
	. <u>http://pms.iitk.ernet.in/wiki/index.php/Physics</u>	
	www.wikipedia encyclopaedia	
	www.physic.about.com	
4	www.physic.org	
5	www.Physicsclassroom.com	
6	www.howstuffwork.com	
7	www.colorado.edu/physics/2000	
8	www.ndrs.org.physic.com	
ç	. <u>www.physlinc.com</u>	
	0. <u>www.fearophysic.com</u>	
1	1. <u>www.hyperphysics.com</u>	
Usef	ul CD Rom for e-learning:-	
1.	Hyper Physics.	
2.		
3.	, , , ,	
	Virtual Physics Junior (Original PC CD Rom).	
5.	Encyclopaedia Britannica-2008.	

COURSE: B.Sc.

SEMESTER: V

SUBJECT NAME: Embedded System: Introduction to Microcontrollers SUBJECT CODE: 4SC05EMS1

Teaching & Evaluation Scheme:-

Теа	ching	hours	/week	Credit	Evaluation Scheme/semester							
					Theory				Practical			
Th	Tu	Pr	Total		Sessio Exar		Univer Exar	•	Inte	rnal	University	Total Marks
					Marks	Hrs	Marks	Hrs	Pr	τw		
4	0	0	4	4	30	1.5	70	3				100

Objectives:-The general purpose of this course is

- To expose the student knowledge of embedded system.
- To expose the student knowledge of applications of microcontrollers.

Prerequisites:-Fundamental knowledge of Digital Electronics and Microcontrollers.

Sr.	Course Contents	Hours
No.		
1	Embedded system introduction	10
	Introduction to embedded systems and general purpose computer systems,	
	architecture of embedded system, classifications, applications and purpose of	
	embedded systems, challenges and design issues in embedded systems,	
	operational and non-operational quality attributes of embedded systems,	
	elemental description of embedded processors and microcontrollers.	
	Review of microprocessors: Organization of Microprocessor based system,	
	8085µp pin diagram and architecture, concept of data bus and address bus,	
	8085 programming model, instruction classification, subroutines.	
2	8051 microcontroller	28
	Introduction and block diagram of 8051 microcontroller, architecture of	
	8051, overview of 8051 family, 8051 assembly language programming,	
	Program Counter and ROM memory map, Data types and directives, Flag bits	
	and Program Status Word (PSW) register, Jump, loop and call	
	instructions.8051 I/O port programming: Introduction of I/O port	
	programming, pin out diagram of 8051 microcontroller, I/O port pins	
	description and their functions, I/O port programming in 8051, (Using	
	Assembly Language), I/O programming: Bit manipulation.Programming of	
	8051: 8051addressing modes and accessing memory using various addressing	
	modes, assembly language instructions using each addressing mode,	
	arithmetic and logic instructions, 8051 programming in C:- for time delay and	
	I/O operations and manipulation, for arithmetic and logic operations, for ASCII and BCD conversions.	

3	Timer and counter programming	11
	Programming 8051 timers, counter programming, Serial port programming	
	with and without interrupt: Introduction to 8051 interrupts, programming	
	timer interrupts, programming external hardware interrupts and serial	
	communication interrupt, interrupt priority in the 8051, Interfacing 8051	
	microcontroller to peripherals: Parallel and serial ADC, DAC interfacing, LCD	
	interfacing.	
4	Programming Embedded Systems	11
	Structure of embedded program, infinite loop, compiling, linking and	
	locating, downloading and debugging.	
	Embedded system design and development: Embedded system development	
	environment, file types generated after cross compilation,	
	disassembler/decompiler, simulator, emulator and debugging, embedded	
	product development life-cycle, trends in embedded industry.	
-		

Learning Outcomes:-After successful completion of this course, students have:

- Knowledge of Digital Electronics and embedded system.
- Knowledge about the applications of microcontrollers.

Books Recommended:-

- 1. 'Embedded Systems: Architecture, Programming and Design', **R. Kamal**,*Tata McGraw Hill*.
- 2. 'The 8051 Microcontroller and Embedded Systems Using Assembly and C', M.A. Mazidi, J.G. Mazidi and R.D. McKinlay, 2ndEd., *Pearson Education India*.
- 3. 'Embedded Microcomputer System: Real Time Interfacing', J.W. Valvano, Brooks/Cole.
- 4. 'Embedded Systems and Robots', **Subrata Ghoshal**, *Cengage Learning*.
- 5. 'Introduction to Embedded System', **K.V. Shibu**, 1stEd., *McGraw Hill*.
- 6. 'Microcontrollers in Practice', **I.Susnea and M.Mitescu**, *Springer*.
- 7. 'Embedded Systems: Design and Applications', S.F. Barrett, PearsonEducation India.
- 8. 'Embedded Microcomputer Systems: Real Time Interfacing', J.W.Valvano, Cengage Learning.

E-Resources:-

- 1. <u>http://pms.iitk.ernet.in/wiki/index.php/Physics</u>
- 2. www.wikipedia encyclopaedia
- 3. <u>www.physic.about.com</u>
- 4. www.physic.org
- 5. <u>www.Physicsclassroom.com</u>
- 6. www.howstuffwork.com
- 7. www.colorado.edu/physics/2000
- 8. <u>www.ndrs.org. physic.com</u>
- 9. www.physlinc.com
- 10. www.fearophysic.com
- 11. www.hyperphysics.com

- 1. Hyper Physics.
- 2. Encyclopaedia of Science (D.K. Multimedia).
- 3. Physics Encyclopaedia.
- 4. Virtual Physics Junior (Original PC CD Rom).
- 5. Encyclopaedia Britannica-2008.

COURSE: B.Sc.

SUBJECT NAME: Physics Practical-V

SEMESTER: V

SUBJECT CODE: 4SC05PPR1

Teaching & Evaluation Scheme:-

Teaching hours/week C				Credit	Evaluation Scheme/semester							
						The	ory		Practical			
Th	Tu	Pr	Total		Sessio Exar		Univer Exar	•	Inte	rnal	University	Total Marks
					Marks	Hrs	Marks	Hrs	Pr	тw		
0	0	6	6	3					20	10	70	100

Objectives:-The general purpose of this course is

• To expose the student knowledge of Practical related to theory.

Prerequisites:-Fundamentalknowledge of Physics Practical.

Course outline:-

 To determine the refractive index of the material of a given prolight. To determine the dispersive power of the material of a given prolamp. To determine the value of Cauchy constants of a material of a prodetermine the value of Cauchy constants of a material of a prodetermine the dielectric constant of a dielectric material with from the dielectric constant of a dielectric material with from the study the PE-hysteresis loop of a ferromagnetic crystal. To draw the BH-curve of iron using solenoid and to determin from hysteresis. To measure the resistivity of a semi-conductor (Ge) crystal wit four probe method (from room temperature to 150 °C) and bandgap. To determine the hall coefficient of a semiconductor sample. Programme to glow first four LED's then next four using timer ap 11 	sm using mercury sm. tube method).
 To determine the dispersive power of the material of a given prilamp. To determine the value of Cauchy constants of a material of a prilimation of the dispersive power of the material of a prilimation of the dispersive power of the material of a prilamp. To determine the value of Cauchy constants of a material of a prilamp. Measurement of Susceptibility of paramagnetic solution (Quinck To measure the dielectric constant of a dielectric material with friction of the dispersion of a ferromagnetic crystal. To study the PE-hysteresis loop of a ferromagnetic crystal. To draw the BH-curve of iron using solenoid and to determin from hysteresis. To measure the resistivity of a semi-conductor (Ge) crystal wit four probe method (from room temperature to 150 °C) and bandgap. To determine the hall coefficient of a semiconductor sample. Programme to glow first four LED's then next four using timer appear. 	sm. tube method).
 lamp. To determine the value of Cauchy constants of a material of a pr Measurement of Susceptibility of paramagnetic solution (Quinck To measure the dielectric constant of a dielectric material with fr To study the PE-hysteresis loop of a ferromagnetic crystal. To draw the BH-curve of iron using solenoid and to determin from hysteresis. To measure the resistivity of a semi-conductor (Ge) crystal wit four probe method (from room temperature to 150 °C) and bandgap. To determine the hall coefficient of a semiconductor sample. Programme to glow first four LED's then next four using timer ap 	sm. tube method).
 3 To determine the value of Cauchy constants of a material of a prior 4 Measurement of Susceptibility of paramagnetic solution (Quinck 5 To measure the dielectric constant of a dielectric material with friend for the pe-hysteresis loop of a ferromagnetic crystal. 7 To draw the BH-curve of iron using solenoid and to determin from hysteresis. 8 To measure the resistivity of a semi-conductor (Ge) crystal with four probe method (from room temperature to 150 °C) and bandgap. 9 To determine the hall coefficient of a semiconductor sample. 10 Programme to glow first four LED's then next four using timer appendix to the problem of the	tube method).
 4 Measurement of Susceptibility of paramagnetic solution (Quinck 5 To measure the dielectric constant of a dielectric material with fr 6 To study the PE-hysteresis loop of a ferromagnetic crystal. 7 To draw the BH-curve of iron using solenoid and to determin from hysteresis. 8 To measure the resistivity of a semi-conductor (Ge) crystal wit four probe method (from room temperature to 150 °C) and bandgap. 9 To determine the hall coefficient of a semiconductor sample. 10 Programme to glow first four LED's then next four using timer appendix to the semiconductor is a semiconductor of the semiconductor is the semiconductor of the	tube method).
 5 To measure the dielectric constant of a dielectric material with fr 6 To study the PE-hysteresis loop of a ferromagnetic crystal. 7 To draw the BH-curve of iron using solenoid and to determin from hysteresis. 8 To measure the resistivity of a semi-conductor (Ge) crystal wit four probe method (from room temperature to 150 °C) and bandgap. 9 To determine the hall coefficient of a semiconductor sample. 10 Programme to glow first four LED's then next four using timer appendix to the semiconductor is a semiconductor of the semiconductor is the semiconductor of the semiconductor of the semiconductor is the semiconductor of the semiconductor of	
 6 To study the PE-hysteresis loop of a ferromagnetic crystal. 7 To draw the BH-curve of iron using solenoid and to determin from hysteresis. 8 To measure the resistivity of a semi-conductor (Ge) crystal wit four probe method (from room temperature to 150 °C) and bandgap. 9 To determine the hall coefficient of a semiconductor sample. 10 Programme to glow first four LED's then next four using timer ap 	equency.
 7 To draw the BH-curve of iron using solenoid and to determin from hysteresis. 8 To measure the resistivity of a semi-conductor (Ge) crystal wit four probe method (from room temperature to 150 °C) and bandgap. 9 To determine the hall coefficient of a semiconductor sample. 10 Programme to glow first four LED's then next four using timer ap 	
 from hysteresis. 8 To measure the resistivity of a semi-conductor (Ge) crystal wit four probe method (from room temperature to 150 °C) and bandgap. 9 To determine the hall coefficient of a semiconductor sample. 10 Programme to glow first four LED's then next four using timer appeared to the semiconductor sample. 	
 8 To measure the resistivity of a semi-conductor (Ge) crystal wit four probe method (from room temperature to 150 °C) and bandgap. 9 To determine the hall coefficient of a semiconductor sample. 10 Programme to glow first four LED's then next four using timer ap 	e the energy loss
 four probe method (from room temperature to 150 °C) and bandgap. 9 To determine the hall coefficient of a semiconductor sample. 10 Programme to glow first four LED's then next four using timer appendix to the semiconductor sample. 	
bandgap.9To determine the hall coefficient of a semiconductor sample.10Programme to glow first four LED's then next four using timer ap	• •
 9 To determine the hall coefficient of a semiconductor sample. 10 Programme to glow first four LED's then next four using timer ap 	to determine its
10 Programme to glow first four LED's then next four using timer ap	
11 To interface seven segment LED display with 8051 microcent	plication.
II TO Interface seven segment LED display with 8051 incrocont	roller and display
'HELP' in the seven segment LED display.	
12 To find the factorial of a number.	
13 To determine the wavelength of a monochromatic light	using Michelson
interferometer.	
14 To determine the mutual induction of coils using ballistic galvance	
15 To study the characteristics of a solar cell.	meter.

* 15% of new experiments can be introduces AND/OR replaced as pertheneed, with the permission of the Head.

Learning Outcomes:-After successful completion of this course, students have:

• Knowledge of Physics Practical and its application in various fields.

Books Recommended:-

1. 'B. Sc. Practical Physics', C. L. Arora, S. Chand and Company Ltd.

- 2. 'Advanced Practical Physics', M. S. Chauhan and S. P. Sing, Pragati Prakashan.
- 3. 'Experimental Physics', University Granth Nirman Board, (Gujarati Medium).
- 4. 'Physics through experiments Vol. I & II', **B. Saraf et al.**, *Vikas Publishing House*.
- 5. 'Advanced Practical Physics', S. L. Gupta and V. Kumar, Pragati Prakashan.
- 6. 'An advanced course in practical Physics', **D. Chattopadhyay and P. C. Rakshit**,*New Central Book Agency Pvt. Ltd.*
- 7. 'Electronic Laboratory Primer', **Poorna Chandra and Sasikala**,*S. Chand and Company Ltd*.
- 8. 'Advanced Practical Physics for Students', **B. L. Wosnop and H. T. Flint**, *Asia Publishing House*.
- 9. 'Advanced Level Physics Practicals', **Michael Nelson and Jon M. Ogborn**, 4th Ed., *Heinemann Educational Publishers*.
- 10. 'Engineering Practical Physics', **S. Panigrahi and B. Mallick**, *Cengage Learning India Pvt. Ltd*.
- 11. 'A Text Book of Practical Physics', Indu Prakash and Ramakrishna, 11th Ed., *Kitab Mahal*.
- 12. 'A Laboratory Manual of Physics for Undergraduate Classes', **D. P. Khandelwal**, *Vani Publication*.
- 13. 'Basic Electronics: A Text Lab Manual, P. B. Zbar, A. P. Malvino and M. A. Miller, *McGraw Hill*.

E-Resources:-

- 1. <u>http://pms.iitk.ernet.in/wiki/index.php/Physics</u>
- 2. <u>www.wikipedia encyclopaedia</u>
- 3. <u>www.physic.about.com</u>
- 4. www.physic.org
- 5. <u>www.Physicsclassroom.com</u>
- 6. www.howstuffwork.com
- 7. www.colorado.edu/physics/2000
- 8. <u>www.ndrs.org. physic.com</u>
- 9. www.physlinc.com
- 10. <u>www.fearophysic.com</u>
- 11. www.hyperphysics.com

- 1. Hyper Physics.
- 2. Encyclopaedia of Science (D.K. Multimedia).
- 3. Physics Encyclopaedia.
- 4. Virtual Physics Junior (Original PC CD Rom).
- 5. Encyclopaedia Britannica-2008.